Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(13): 20919-20929, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37381204

RESUMO

Multi-core fiber based on space division multiplexing technology provides a practical solution to achieve multi-channel and high-capacity signal transmission. However, long-distance and error-free transmission remains challenging due to the presence of inter-core crosstalk within the multi-core fiber. Here, we propose and prepare a novel trapezoid-index thirteen-core single-mode fiber to solve the problems that MCF has large inter-core crosstalk and the transmission capacity of single-mode fiber approaches the upper limit. The optical properties of thirteen-core single-mode fiber are measured and characterized by experimental setups. The inter-core crosstalk of the thirteen-core single-mode fiber is less than -62.50 dB/km at 1550 nm. At the same time, each core can transmit signals at a data rate of 10 Gb/s and achieve error-free signal transmission. The prepared optical fiber with a trapezoid-index core provides a new and feasible solution for reducing inter-core crosstalk, which can be loaded into current communication systems and applied in large data centers.

2.
Opt Express ; 31(9): 15214-15226, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157368

RESUMO

A graded-index 13-core 5-LP mode fiber with high doped core and stairway-index trench structure have been successfully prepared by Hole-drilling method and Plasma vapor deposition. This fiber has 104 spatial channels, realizing large capacity information transmission. By building an experimental platform, the 13-core 5-LP mode fiber have been tested and characterized. The core can stably transmit 5 LP modes. The transmission loss is lower than 0.5 dB/km. Inter-core crosstalk (ICXT) of each layer of core is analyzed in detail. The ICXT can be less than -30 dB/100 km. The test results show that this fiber can stably transmit 5 LP modes, and has the characteristics of low loss and low crosstalk, realizing large capacity transmission. This fiber provides a solution to the issue of limited fiber capacity.

3.
Opt Express ; 31(6): 10473-10488, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157593

RESUMO

We propose a novel heterogeneous nineteen-core four-mode fiber. The heterogeneous core arrangement and trench-assisted structure can significantly suppress inter-core crosstalk (XT). In order to control the number of modes in the core, a low refractive index area is introduced in the core. The number of LP modes and the effective refractive index difference (Δneff) of adjacent modes in the core are controlled by changing the refractive index distribution of the core and the parameters of the low refractive index area in the core. And the mode state of low intra-core crosstalk is successfully realized in the graded index core. After the optimization of fiber parameters, each core can stably transmit four LP modes under the optimal fiber parameters, and the inter-core crosstalk of LP02 mode is less than -60 dB/km. Finally, the effective mode area (Aeff) and dispersion (D) of nineteen-core four-mode fiber in C+L band are described. The results show that the nineteen-core four-mode fiber is suitable for terrestrial and undersea communication systems, data centers, optical sensors and other fields.

4.
Front Plant Sci ; 14: 1168111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051075

RESUMO

Introduction: Human activities have increased the nitrogen (N) and phosphorus (P) supply ratio of the natural ecosystem, which affects the growth of plants and the circulation of soil nutrients. However, the effect of the N and P supply ratio and the effect of plant on the soil microbial community are still unclear. Methods: In this study, 16s rRNA sequencing was used to characterize the response of bacterial communities in Phragmites communis (P.communis) rhizosphere and non-rhizosphere soil to N and P addition ratio. Results: The results showed that the a-diversity of the P.communis rhizosphere soil bacterial community increased with increasing N and P addition ratio, which was caused by the increased salt and microbially available C content by the N and P ratio. N and P addition ratio decreased the pH of non-rhizosphere soil, which consequently decreased the a-diversity of the bacterial community. With increasing N and P addition ratio, the relative abundance of Proteobacteria and Bacteroidetes increased, while that of Actinobacteria and Acidobacteria decreased, which reflected the trophic strategy of the bacterial community. The bacterial community composition of the non-rhizosphere soil was significantly affected by salt, pH and total carbon (TC) content. Salt limited the relative abundance of Actinobacteria, and increased the relative abundance of Bacteroidetes. The symbiotic network of the rhizosphere soil bacterial community had lower robustness. This is attributed to the greater selective effect of plants on the bacterial community influenced by nutrient addition. Discussion: Plants played a regulatory role in the process of N and P addition affecting the bacterial community, and nutrient uptake by the root system reduced the negative impact of N and P addition on the bacterial community. The variations in the rhizosphere soil bacterial community were mainly caused by the response of the plant to the N and P addition ratio.

5.
Opt Express ; 31(5): 7290-7302, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36859864

RESUMO

We propose a homogeneous five-mode twelve-core fiber with a trench-assisted structure, combining a low refractive index circle and a high refractive index ring (LCHR). The 12-core fiber utilizes the triangular lattice arrangement. The properties of the proposed fiber are simulated by the finite element method. The numerical result shows that the worst inter-core crosstalk (ICXT) can achieve at -40.14 dB/100 km, which is lower than the target value (-30 dB/100 km). Since adding the LCHR structure, the effective refractive index difference between LP21 and LP02 mode is 2.8 × 10-3, which illustrates that the LP21 and LP02 modes can be separated. In contrast to without the LCHR, the dispersion of LP01 mode has an apparent dropping, which is 0.16 ps/(nm·km) at 1550 nm. Moreover, the relative core multiplicity factor can reach 62.17, which indicates a large core density. The proposed fiber can be applied to the space division multiplexing system to enhance the fiber transmission channels and capacity.

6.
Opt Express ; 30(15): 27746-27762, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236939

RESUMO

Seven-core five-mode fiber and single-core five-mode fiber with the same core structure by high and low refractive index double rings are prepared based on plasma chemical vapor deposition. The transmission characteristics of the single-core few-mode fiber and the seven-core few-mode fiber are measured and characterized by building an experimental platform. The prepared single-core few-mode fiber can stably transmit five LP modes at 1550 nm, which not only has low loss characteristics, but also has excellent bending resistance. Furthermore, the transmission loss of the prepared seven-core fiber is lower than 0.4 dB/km, and the inter-core crosstalk is lower than -50 dB/km, which realizes the high-density and low-crosstalk transmission of the multi-core fiber. The prepared seven-core few-mode fiber can solve the capacity limitation of single-mode fiber, which will contribute the development of future communication systems.

7.
Front Plant Sci ; 13: 952830, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304393

RESUMO

To explore the adaptation of the fine root morphology and chemical characteristics of Tamarix chinensis to water-salt heterogeneity in the groundwater-soil system of a coastal wetland zone, T. chinensis forests at different groundwater levels (high: GW1 0.54 m and GW2 0.83 m; medium: GW3 1.18 m; low: GW4 1.62 m and GW5 2.04 m) in the coastal wetland of the Yellow River Delta were researched, and the fine roots of T. chinensis standard trees were excavated. The fine roots were classified by the Pregitzer method, and the morphology, nutrients, and nonstructural carbohydrate characteristics of each order were determined. The results showed that the groundwater level had a significant indigenous effect on the soil water and salt conditions and affected the fine roots of T. chinensis. At high groundwater levels, the specific root length and specific surface area of fine roots were small, the root tissue density was high, the fine root growth rate was slow, the nutrient use efficiency was higher than at low groundwater levels, and the absorption of water increased with increasing specific surface area. With decreasing groundwater level, the N content and C/N ratio of fine roots first decreased and then increased, and the soluble sugar, starch, and nonstructural carbohydrate content of fine roots first increased and then decreased. At high and low groundwater levels, the metabolism of fine roots of T. chinensis was enhanced, and their adaptability to high salt content and low water content soil environments improved. The first- and second-order fine roots of T. chinensis were mainly responsible for water and nutrient absorption, while the higher-order (from the third to fifth orders) fine roots were primarily responsible for the transportation and storage of carbohydrates. The fine root morphology, nutrients, nonstructural carbohydrate characteristics, and other aspects of the water and salt environment heterogeneity cooperated in a synergistic response and trade-off adjustment.

8.
Sci Bull (Beijing) ; 66(19): 2025-2035, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654172

RESUMO

Terrestrial species are predicted to migrate northward under global warming conditions, yet little is known about the direction and magnitude of change in microbial distribution patterns. In this continental-scale study with more than 1600 forest soil samples, we verify the existence of core microbiota and lump them into a manageable number of eco-clusters based on microbial habitat preferences. By projecting the abundance differences of eco-clusters between future and current climatic conditions, we observed the potential warming-driven migration of the core microbiota under warming, partially verified by a field warming experiment at Southwest China. Specifically, the species that favor low pH are potentially expanding and moving northward to medium-latitudes (25°-45°N), potentially implying that warm temperate forest would be under threat of soil acidification with warming. The eco-cluster of high-pH with high-annual mean temperature (AMT) experienced significant abundance increases at middle- (35°-45°N) to high-latitudes (> 45°N), especially under Representative Concentration Pathway (RCP) 8.5, likely resulting in northward expansion. Furthermore, the eco-cluster that favors low-soil organic carbon (SOC) was projected to increase under warming scenarios at low-latitudes (< 25°N), potentially an indicator of SOC storage accumulation in warmer areas. Meanwhile, at high-latitudes (> 45°N) the changes in relative abundance of this eco-cluster is inversely related with the temperature variation trends, suggesting microbes-mediated soil organic carbon changes are more responsive to temperature variation in colder areas. These results have vital implications for the migration direction of microbial communities and its potential ecological consequences in future warming scenarios.


Assuntos
Microbiota , Solo , Solo/química , Carbono/metabolismo , Microbiologia do Solo , Aquecimento Global
9.
Sci Total Environ ; 756: 143801, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33307496

RESUMO

Soil salinization and nutrient deficiency have emerged as the major factors negatively impacting soil quality and primary productivity in the coastal saline-alkali soil of the Yellow River Delta. Biochar has been proposed as an efficient strategy for promoting plant growth and restoring degraded saline-alkali soil. However, knowledge is inadequate regarding the effects of adding Spartina alterniflora-derived biochar alone or in combination with effective microorganisms (EM) on the growth of Sesbania cannabina and soil quality in saline-alkali soil. To enhance this knowledge, a pot experiment with different EM treatments (without EM addition, EM-; with EM addition, EM+) and a gradient of biochar treatments (0%, B0; 0.5%, B1; 1.5%, B2; and 3%, B3; biochar weight/soil weight) was conducted. Our results showed that biochar addition alone and in combination with EM significantly increased seed germination, plant height, stem diameter, total biomass and plant nutrient uptake of S. cannabina. Biochar addition, EM addition and their interaction significantly decreased soil salt content efficiently and increased soil total carbon (TC), total nitrogen (TN), available phosphorus (AP) and available potassium (AK) but had little effect on soil pH. Biochar addition increased soil organic carbon, soil NH4+ and NO3-, microbial biomass carbon, and soil enzyme activities and these effects increased in strength when biochar and EM were present simultaneously. Of the treatments, the EM + B3 treatment had the largest effects in terms of inhibiting salinization, increasing soil fertility, elevating soil nutrients and enzyme activities, and improving plant growth. Moreover, the application of biochar and EM promoted the growth of S. cannabina by enhancing plant nutrient uptake, improving soil fertility (e.g., TN, AP, AK, NH4+ and NO3-), and elevating soil enzyme activities (urease and alkaline phosphatase activity). Overall, the integrated use of an appropriate biochar rate (3%) and EM for coastal saline-alkali soil could be an effective strategy to ameliorate soil salinity, improve soil quality and promote plant productivity.


Assuntos
Sesbania , Solo , Álcalis , Carbono , Carvão Vegetal , China , Nitrogênio , Rios
10.
Sci Data ; 7(1): 323, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33009397

RESUMO

Numerous ecosystem manipulative experiments have been conducted since 1970/80 s to elucidate responses of terrestrial carbon cycling to the changing atmospheric composition (CO2 enrichment and nitrogen deposition) and climate (warming and changing precipitation regimes), which is crucial for model projection and mitigation of future global change effects. Here, we extract data from 2,242 publications that report global change manipulative experiments and build a comprehensive global database with 5,213 pairs of samples for plant production (productivity, biomass, and litter mass) and ecosystem carbon exchange (gross and net ecosystem productivity as well as ecosystem and soil respiration). Information on climate characteristics and vegetation types of experimental sites as well as experimental facilities and manipulation magnitudes subjected to manipulative experiments are also included in this database. This global database can facilitate the estimation of response and sensitivity of key terrestrial carbon-cycling variables under future global change scenarios, and improve the robust projection of global change‒terrestrial carbon feedbacks imposed by Earth System Models.


Assuntos
Ciclo do Carbono , Carbono/análise , Ecossistema , Plantas , Biomassa , Clima , Planeta Terra , Solo
11.
BMC Plant Biol ; 20(1): 112, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164525

RESUMO

BACKGROUND: Sand burial plays an irreplaceable and unique role in the growth and distribution of vegetation on the Shell Dike Island in the Yellow River Delta. There are still some unknown on the effects of sand burial on the morphology, biomass, and especially the stoichiometry of Periploca sepium, as well as the relationship between these factors. RESULTS: Shell sand burial depth had a significant influence on seedling emergence, growth, and biomass of P. sepium. Shallow sand burial shortened the emergence time and improved the emergence rate, morphological and biomass of P. sepium compared to deep burial and the control. Burial depth significantly affected the nitrogen (N) and phosphorus (P) contents of the leaves. With deep burial, the carbon/nitrogen (C/N) and carbon/phosphorus (C/P) ratios decreased firstly and then increased with depth, while the nitrogen/phosphorus ratio (N/P) presented the contrary trend. Correlation analysis showed that the stoichiometry of N/P was positively correlated to morphology and biomass of P. sepium at different burial depths. Structural equation model analysis revealed that N was the largest contributor to P. sepium biomass. CONCLUSIONS: Optimal burial depth is beneficial to the seedling emergence, growth and nutritional accumulation of P. sepium. Stoichiometry has an important influence on the morphological formation and biomass accumulation.


Assuntos
Biomassa , Germinação , Periploca/fisiologia , Areia , Plântula/crescimento & desenvolvimento , China , Periploca/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento
12.
Nat Ecol Evol ; 3(9): 1309-1320, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31427733

RESUMO

Direct quantification of terrestrial biosphere responses to global change is crucial for projections of future climate change in Earth system models. Here, we synthesized ecosystem carbon-cycling data from 1,119 experiments performed over the past four decades concerning changes in temperature, precipitation, CO2 and nitrogen across major terrestrial vegetation types of the world. Most experiments manipulated single rather than multiple global change drivers in temperate ecosystems of the USA, Europe and China. The magnitudes of warming and elevated CO2 treatments were consistent with the ranges of future projections, whereas those of precipitation changes and nitrogen inputs often exceeded the projected ranges. Increases in global change drivers consistently accelerated, but decreased precipitation slowed down carbon-cycle processes. Nonlinear (including synergistic and antagonistic) effects among global change drivers were rare. Belowground carbon allocation responded negatively to increased precipitation and nitrogen addition and positively to decreased precipitation and elevated CO2. The sensitivities of carbon variables to multiple global change drivers depended on the background climate and ecosystem condition, suggesting that Earth system models should be evaluated using site-specific conditions for best uses of this large dataset. Together, this synthesis underscores an urgent need to explore the interactions among multiple global change drivers in underrepresented regions such as semi-arid ecosystems, forests in the tropics and subtropics, and Arctic tundra when forecasting future terrestrial carbon-climate feedback.


Assuntos
Ciclo do Carbono , Ecossistema , Carbono , China , Europa (Continente)
13.
Sci Total Environ ; 640-641: 1297-1301, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30021296

RESUMO

Rhizosheaths are frequently found in arid and semiarid ecosystems, but their impacts on root decomposition rates and associated carbon (C) and nutrient fluxes remain unclear. We investigated mass, C and nitrogen (N) loss for the roots of Stipa krylovii and Carex korshinskii; the roots were exposed to rhizosheaths, bulk soil, or no soil in litterbags during a 102-d short-term decomposition experiment. Compared with no soil addition, rhizosheath addition increased the mass loss by 39% for S. krylovii, a sheath-forming grass, and by 11% for C. korshinskii, a non-sheath-forming grass. Rhizosheath addition also increased root C loss by 39% and N loss by 41% for S. krylovii but did not significantly alter root C or N loss for C. korshinskii, which may be due to a "home-field advantage" effect. In contrast, bulk soil addition did not alter mass, C, or N loss for either plant species, possibly because bulk soils contained fewer nutrients (C, N, and phosphorus) than rhizosheaths. We demonstrate for the first time that conventional root decomposition studies that do not account for rhizosheaths will underestimate the root mass, C and N loss by >20% in semiarid grasslands. Future studies should emphasize the crucial yet unappreciated role of rhizosheaths in driving soil organic matter cycling.


Assuntos
Pradaria , Raízes de Plantas/metabolismo , Rizosfera , Biodegradação Ambiental , Carbono , Ecossistema , Nitrogênio , Poaceae , Solo
14.
Sci Total Environ ; 644: 1286-1291, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743841

RESUMO

Microbial residues play important role in regulating soil carbon (C) turnover and stability, but the responses of microbial residues to climate change are neglected. In this study, a 5-year field experiment that simulated two climate change factors (precipitation and warming) was performed to examine microbial residue changes in a semiarid grassland, with water limitation. Both the contents of total amino sugars (a biomarker of microbial residues) and glucosamine (a biomarker of fungal residues) increased significantly with increased precipitation and decreased under warming, whereas neither increased precipitation nor warming influenced the content of muramic acid (a biomarker of bacterial residues). These findings clarified the role of fungal residues in determining the response of microbial residues to altered water availability and plant productivity induced by increased precipitation and elevated temperature. Interestingly, microbial residues had a much greater response to climate change than total soil C, implying that soil C composition and stability altered prior to soil C storage and simultaneously slowed down the change of soil C pool. Integrating microbial residues into current climate-C models is expected to enable the models to more accurately evaluate soil C responses to climate regimes in semiarid grasslands.


Assuntos
Mudança Climática , Monitoramento Ambiental , Pradaria , Microbiologia do Solo , Bactérias , Fungos , Solo , Temperatura
15.
FEMS Microbiol Ecol ; 93(5)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28499007

RESUMO

Understanding soil CO2 flux temperature sensitivity (Q10) is critical for predicting ecosystem-level responses to climate change. Yet, the effects of warming on microbial CO2 respiration still remain poorly understood under current Earth system models, partly as a result of thermal acclimation of organic matter decomposition. We conducted a 117-day incubation experiment under constant and diurnally varying temperature treatments based on four forest soils varying in vegetation stand and soil horizon. Our results showed that Q10 was greater under varying than constant temperature regimes. This distinction was most likely attributed to differences in the depletion of available carbon between constant high and varying high-temperature treatments, resulting in significantly higher rates of heterotrophic respiration in the varying high-temperature regime. Based on 16S rRNA gene sequencing data using Illumina, the varying high-temperature regime harbored higher prokaryotic alpha-diversity, was more dominated by the copiotrophic strategists and sustained a distinct community composition, in comparison to the constant-high treatment. We found a tightly coupled relationship between Q10 and microbial trophic guilds: the copiotrophic prokaryotes responded positively with high Q10 values, while the oligotrophs showed a negative response. Effects of vegetation stand and soil horizon consistently supported that the copiotrophic vs oligotrophic strategists determine the thermal sensitivity of CO2 flux. Our observations suggest that incorporating prokaryotic functional traits, such as shifts between copiotrophy and oligotrophy, is fundamental to our understanding of thermal acclimation of microbially mediated soil organic carbon cycling. Inclusion of microbial functional shifts may provide the potential to improve our projections of responses in microbial community and CO2 efflux to a changing environment in forest ecosystems.


Assuntos
Aclimatação/fisiologia , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Mudança Climática , Ecossistema , Florestas , Processos Heterotróficos , Temperatura Alta , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo
16.
Oecologia ; 178(2): 579-90, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25663332

RESUMO

It is predicted that locust outbreaks will occur more frequently under future climate change scenarios, with consequent effects on ecological goods and services. A field manipulative experiment was conducted to examine the responses of gross ecosystem productivity (GEP), net ecosystem carbon dioxide (CO2) exchange (NEE), ecosystem respiration (ER), and soil respiration (SR) to locust outbreaks in a temperate steppe of northern China from 2010 to 2011. Two processes related to locust outbreaks, natural locust feeding and carcass deposition, were mimicked by clipping 80 % of aboveground biomass and adding locust carcasses, respectively. Ecosystem carbon (C) exchange (i.e., GEP, NEE, ER, and SR) was suppressed by locust feeding in 2010, but stimulated by locust carcass deposition in both years (except SR in 2011). Experimental locust outbreaks (i.e., clipping plus locust carcass addition) decreased GEP and NEE in 2010 whereas they increased GEP, NEE, and ER in 2011, leading to neutral changes in GEP, NEE, and SR across the 2 years. The responses of ecosystem C exchange could have been due to the changes in soil ammonium nitrogen, community cover, and aboveground net primary productivity. Our findings of the transient and neutral changes in ecosystem C cycling under locust outbreaks highlight the importance of resistance, resilience, and stability of the temperate steppe in maintaining reliable ecosystem services, and facilitate the projections of ecosystem functioning in response to natural disturbance and climate change.


Assuntos
Biomassa , Ciclo do Carbono , Carbono , Clima , Gafanhotos , Pradaria , Plantas , Animais , Carbono/química , Dióxido de Carbono/química , China , Mudança Climática , Ecologia , Nitrogênio/química , Plantas/metabolismo , Crescimento Demográfico , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...